Award Date
12-15-2018
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Physics and Astronomy
First Committee Member
Michael Pravica
Second Committee Member
Eunja Kim
Third Committee Member
David Hatchett
Fourth Committee Member
Stephen Lepp
Number of Pages
69
Abstract
It has been theoretically predicted that when mercury difluoride (HgF2) is pressurized to above 50 GPa in the presence of molecular fluorine, it will most likely transform into mercury tetrafluoride (HgF4), thus mercury will behave as a transition element at high pressure. However, there is no experimental evidence verifying this prediction yet. To begin with, the crystalline properties of pure HgF2 at high pressure were not experimentally established. In this thesis, the high pressure structural properties of HgF2 are investigated by means of synchrotron X-ray powder diffraction. Our results reveal that the predicted, ambient cubic structure of HgF2 with the space group Fm3m, can be obtained via a high-pressure ramp purification process using powdered HgF2 mixed with crystalline XeF2 which serves as our molecular fluorine source. The structural transformation of purified HgF2 is observed above 2.5 GPa, and by using first-principle calculations, two candidate structures with space groups Pnma and Pnam are proposed which persist up to 63 GPa. Furthermore, studies of HgF2 in the presence of F2 produced by the X-ray induced decomposition of XeF2 up to 70 GPa are reviewed. The obtained results provide more insights into the highpressure behavior of mercury-fluorine compounds and will benefit further experimental investigation of high pressure induced synthesis of HgF4.
Keywords
Diamond anvil cell; High pressure physics; mercury difluoride; Mercury tetrafluoride; X-rays
Disciplines
Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Schyck, Sarah, "Studies of Inner-Shell Chemistry of Mercury Based Compounds at Extreme Conditions" (2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3453.
http://dx.doi.org/10.34917/14279172
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/