Award Date
5-1-2022
Degree Type
Thesis
Degree Name
Master of Science in Computer Science
Department
Computer Science
First Committee Member
Andreas Stefik
Second Committee Member
Edward Jorgensen
Third Committee Member
Jorge Fonseca Cacho
Fourth Committee Member
Sarah Harris
Number of Pages
43
Abstract
Context: Computer Science enrollment has seen increases in recent years. At the University of Nevada, Las Vegas we have seen an average year to year growth rate of 17.33% in the spring and 13.71% in the fall over the past 10 years in our entry level programming course. These enrollment increases have led to considerable additional costs for grading course material.Objective: The goal of this study is to determine the impact of automatic grading systems on students. If automatic grading is at least as effective as manual grading in practice, it may reduce cost under the context of at least entry level courses. However, negative impacts of automatic grading are not well understood in the literature and such systems should at least "do no harm" to students in order to be considered. Participants: We recruited 171 college level computer science students from our introduction to C++ programming class (CS135 - Computer Science I) at the University of Nevada, Las Vegas during the fall semester of 2021 and analyzed their work over the semester. Study Method: A counterbalanced within subjects study with repeated measures was run over the course of the fall 2021 semester measuring scores from programming lab assignments. The goal was to evaluate the student impact when students are graded by a paid human teaching assistant vs. an automatic grading platform. Findings: Each student had ten manually graded and ten automatically graded lab scores that were collected, resulting in 3,420 total data points. After data cleaning (e.g., outlier and missing lab submissions), we were left with 2,539. Results show that assignments automatically graded had higher scores with lower standard deviation amongst submissions (M = 98.7, SD= 2.4), compared to those graded manually (M = 95.9, SD = 6.2), a significant difference of moderate size (F(3.27, 130.79) = 6.249, p < 0.001, eta_P^2 = 0.135). Conclusions: While our results were gathered in a particular context, a first programming course, we found that automated grading had no obvious negative impact on students. Notably, we observed a significant increase in grades, we theorize because it provided immediate feedback on code submissions. Further, we observed a higher standard deviation in manually graded assignments. After inspection, we suspect this was caused by general inconsistency between human graders, despite training and practice. More work is needed, but we conclude that automated grading in our context may have had a small positive impact, in addition to potentially reducing cost.
Keywords
automated assessment; computer-managed instruction; grading; real-time feedback; student outcome
Disciplines
Computer Sciences | Education | Statistics and Probability
File Format
File Size
1966 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
St. Aubin, Alex James, "An Empirical Investigation into the Impact of Automated Grading" (2022). UNLV Theses, Dissertations, Professional Papers, and Capstones. 4476.
http://dx.doi.org/10.34917/31813371
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/