Location
University of Nevada Las Vegas, Science and Education Building
Start Date
9-8-2011 10:15 AM
End Date
9-8-2011 12:00 PM
Description
High temperature structure of CoCu₂O₃ The spin ladder compounds have received much attention recently due to their relation to the high transition temperature superconductivity. Also the study of spin ladder compounds is of great interest to explore the specific characteristics that result in their behavior. The CoCu₂O₃ spin ladder crystal structure is similar to SrCu₂O₃, which is apparent composition for many high temperature superconductors. The effects of temperature on structural change are investigated for this system. High temperature x-ray diffraction patterns were collected up to 1000⁰C and the variation of lattice parameters as a function of temperature up to decomposition is studied.
The thermal stability of CoCu₂O₃, has been studied at elevated oxygen pressures beyond a high temperature of 1000⁰C [1]. Temperatures at which CoCu₂O₃ undergoes decomposition reactions were studied along with the products of the reactions. The study introduced here provides structural details and the linear coefficient of thermal expansion (CTE) before progressive decomposition.
Keywords
Cobalt compounds; Copper compounds; High temperature superconductors
Disciplines
Atomic, Molecular and Optical Physics | Biological and Chemical Physics | Physics
Language
English
COinS
Crystal structural behavior of CoCu₂O₃ at high temperatures
University of Nevada Las Vegas, Science and Education Building
High temperature structure of CoCu₂O₃ The spin ladder compounds have received much attention recently due to their relation to the high transition temperature superconductivity. Also the study of spin ladder compounds is of great interest to explore the specific characteristics that result in their behavior. The CoCu₂O₃ spin ladder crystal structure is similar to SrCu₂O₃, which is apparent composition for many high temperature superconductors. The effects of temperature on structural change are investigated for this system. High temperature x-ray diffraction patterns were collected up to 1000⁰C and the variation of lattice parameters as a function of temperature up to decomposition is studied.
The thermal stability of CoCu₂O₃, has been studied at elevated oxygen pressures beyond a high temperature of 1000⁰C [1]. Temperatures at which CoCu₂O₃ undergoes decomposition reactions were studied along with the products of the reactions. The study introduced here provides structural details and the linear coefficient of thermal expansion (CTE) before progressive decomposition.
Comments
Research supported by NSF grant # DMR-1005247