Model for Porous Alumina Template Formation: Constant Voltage Anodization

Document Type

Article

Publication Date

2006

Publication Title

European Physical Journal Applied Physics

Volume

35

Issue

2

First page number:

107

Last page number:

111

Abstract

In spite of the extensive experimental investigations reported in the literature on porous alumina templates, the theoretical mechanisms, and their dependence on process parameters such as potential difference, current density and electrolytes, are not well understood. A theoretical model developed and published for porous structure formation under constant current electrochemical anodization of aluminum is adopted for constant voltage anodization. The model is based on the rate equation approach in which both the alumina formation and etching are considered. The model employs a minimal number of parameters and yet captures the essence of the experimental observations. The model yields an analytical solution relating the model parameters, process parameters and thickness of the film, which is easy to interpret and use. The results of normalized current versus time obtained from the model are in good agreement with the experimental results reported for a range of voltages, 20-40 V. It is also observed that the thickness of the Al2O3 pore follows V1/2 behavior for anytime during the anodization.

Keywords

Alumina; Aluminum – Anodic oxidation; Aluminum oxide; Anodizing; Current density; Electric currents; Electrolytes; Experimental study; Metals—Anodic oxidation; Porous materials; Rate equation; Surface treatment; Template; Theoretical model; Theoretical study

Permissions

Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited

UNLV article access

Search your library

Share

COinS