Document Type
Article
Publication Date
6-2001
Publication Title
Review of Scientific Instruments
Volume
72
Issue
6
First page number:
2769
Last page number:
2776
Abstract
Characterizing and calibrating a low impedance large Helmholtz coil generating 60 Hz magnetic fields with amplitudes well below the earth’s magnetic field is difficult and imprecise when coil shielding is not available and noise is an issue. Parameters influencing the calibration process such as temperature and coil impedance need to be figured in the calibration process. A simple and reliable calibration technique is developed and used to measure low amplitude fields over a spatial grid using a standard Hall effect probe gaussmeter. These low amplitude fields are typically hard or impossible to detect in the presence of background fields when using the gaussmeter in the conventional manner. Standard deviations of two milligauss and less have been achieved over a spatial grid in a uniform field region. Theoretical and measured fields are compared yielding reasonable agreement for a large coil system designed and built for bioelectromagnetic experiments at the University of Nevada at Las Vegas using simple tools. Theoretical results need to be compared with and adjusted in accord with measurements taken over a large parameter space within the design constraints of the coil. Magnetic field measurements made over a four year period are shown to be consistent. Characterizing and calibrating large Helmholtz coils can be performed with rulers, levels, plumb lines, and inexpensive gaussmeters.
Keywords
Calibration; Geomagnetism and paleomagnetism; Magnetic fields; Alternating current power transmission; Experiment design; Field theory; Magnetic field Measurements; Unified field theories
Disciplines
Computer Engineering | Electrical and Computer Engineering | Engineering
Language
English
Permissions
Copyright American Institute of Physics. Used with permission.
Repository Citation
Schill, R. A.,
Hoff, K. V.
(2001).
Characterizing and Calibrating a Large Helmholtz Coil At Low AC Magnetic Field Levels with Peak Magnitudes Below the Earth's Magnetic Field.
Review of Scientific Instruments, 72(6),
2769-2776.
https://digitalscholarship.unlv.edu/ece_fac_articles/578