Document Type

Article

Publication Date

6-2001

Publication Title

Review of Scientific Instruments

Volume

72

Issue

6

First page number:

2769

Last page number:

2776

Abstract

Characterizing and calibrating a low impedance large Helmholtz coil generating 60 Hz magnetic fields with amplitudes well below the earth’s magnetic field is difficult and imprecise when coil shielding is not available and noise is an issue. Parameters influencing the calibration process such as temperature and coil impedance need to be figured in the calibration process. A simple and reliable calibration technique is developed and used to measure low amplitude fields over a spatial grid using a standard Hall effect probe gaussmeter. These low amplitude fields are typically hard or impossible to detect in the presence of background fields when using the gaussmeter in the conventional manner. Standard deviations of two milligauss and less have been achieved over a spatial grid in a uniform field region. Theoretical and measured fields are compared yielding reasonable agreement for a large coil system designed and built for bioelectromagnetic experiments at the University of Nevada at Las Vegas using simple tools. Theoretical results need to be compared with and adjusted in accord with measurements taken over a large parameter space within the design constraints of the coil. Magnetic field measurements made over a four year period are shown to be consistent. Characterizing and calibrating large Helmholtz coils can be performed with rulers, levels, plumb lines, and inexpensive gaussmeters.

Keywords

Calibration; Geomagnetism and paleomagnetism; Magnetic fields; Alternating current power transmission; Experiment design; Field theory; Magnetic field Measurements; Unified field theories

Disciplines

Computer Engineering | Electrical and Computer Engineering | Engineering

Language

English

Permissions

Copyright American Institute of Physics. Used with permission.

UNLV article access

Search your library

Share

COinS