Single-axis Gyroscopic Motion with Uncertain Angular Velocity About Spin Axis

Document Type

Article

Publication Date

12-1977

Publication Title

Transactions ASME Journal of Dynamic System, Measurement and Control

Volume

99

Issue

4

First page number:

259

Last page number:

267

Abstract

A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation, is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

Keywords

Equilibrium (Physics); Particle spin; Manifolds; Theoretical methods

Disciplines

Controls and Control Theory | Electrical and Computer Engineering | Electrical and Electronics | Electronic Devices and Semiconductor Manufacturing | Power and Energy | Signal Processing | Systems and Communications

Language

English

Permissions

Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited

UNLV article access

Search your library

Share

COinS