Computer-based model for flood evacuation emergency planning

Document Type

Article

Publication Date

2005

Publication Title

Natural Hazards

Volume

34

Issue

1

First page number:

25

Last page number:

51

Abstract

A computerized simulation model for capturing human behavior during flood emergency evacuation is developed using a system dynamics approach. It simulates the acceptance of evacuation orders by the residents of the area under threat; number of families in the process of evacuation; and time required for all evacuees to reach safety. The model is conceptualized around the flooding conditions (physical and management) and the main set of social and mental factors that determine human behavior before and during the flood evacuation. The number of families under the flood threat, population in the process of evacuation, inundation of refuge routes, flood conditions (precipitation, river elevation, etc.), and different flood warnings and evacuation orders related variables are among the large set of variables included in the model. They are linked to the concern that leads to the danger recognition, which triggers evacuation decisions that determine the number of people being evacuated. The main purpose of the model is to assess the effectiveness of different flood emergency management procedures. Each procedure consists of the choice of flood warning method, warning consistency, timing of evacuation order, coherence of the community, upstream flooding conditions, and set of weights assigned to different warning distribution methods. Model use and effectiveness are tested through the evaluation of the effectiveness of different flood evacuation emergency options in the Red River Basin, Canada.

Keywords

Behavior; Computer simulation; Evacuation of civilians; Flood warning systems; Flooding; Floods; Human behavior; North America – Red River Valley (Minnesota and North Dakota and Manitoba); Simulation; System dynamics

Disciplines

Civil Engineering | Computational Engineering | Environmental Engineering | Environmental Sciences | Fresh Water Studies | Other Public Affairs, Public Policy and Public Administration | Public Affairs, Public Policy and Public Administration

Language

English

Comments

The original publication is available at www.springerlink.com

Permissions

Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited

UNLV article access

Search your library

Share

COinS