Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns
Document Type
Article
Publication Date
3-2013
Publication Title
Advances in Water Resources
Volume
53
First page number:
150
Last page number:
162
Abstract
This study focuses on improving the spring–summer streamflow forecast lead time using large scale climate patterns. An artificial intelligence type data-driven model, Support Vector Machine (SVM), was developed incorporating oceanic–atmospheric oscillations to increase the forecast lead time. The application of SVM model is tested on three unimpaired gages in the North Platte River Basin. Seasonal averages of oceanic–atmospheric indices for the period of 1940–2007 are used to generate spring–summer streamflow volumes with 3-, 6- and 9-month lead times. The results reveal a strong association between coupled indices compared to their individual effects. The best streamflow estimates are obtained at 6-month compared to 3-month and 9-month lead times. The proposed modeling technique is expected to provide useful information to water managers and help in better managing the water resources and the operation of water systems.
Keywords
Artificial intelligence; Atmospheric tides; Climate variability; Climatology; Forecast; Forecasting; North Platte; Oscillations; Streamflow; Streamflow—Forecasting; Support vector machines; SVM; Water-supply; Water; Water—Management; Water-supply--Management
Disciplines
Atmospheric Sciences | Civil and Environmental Engineering | Climate | Environmental Engineering | Environmental Sciences | Oceanography | Water Resource Management
Language
English
Permissions
Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.
Repository Citation
Kalra, A.,
Ahmad, S.,
Nayak, A.
(2013).
Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns.
Advances in Water Resources, 53
150-162.
http://dx.doi.org/10.1016/j.advwatres.2012.11.004