Document Type

Article

Publication Date

9-19-2021

Publication Title

Geophysical Research Letters

Volume

48

Issue

17

First page number:

1

Last page number:

11

Abstract

The material properties and distribution of faults above the seismogenic zone promote or inhibit earthquake rupture propagation. We document the depths and mechanics of fault slip along the seismically active Hurricane fault, UT, with scanning and transmission electron microscopy and hematite (U-Th)/He thermochronometry. Hematite occurs as mm-scale, striated patches on a >10 m2 thin, mirror-like silica fault surface. Hematite textures include bulbous aggregates and cataclasite, overlain by crystalline Fe-oxide nanorods and an amorphous silica layer at the slip interface. Textures reflect mechanical, fluid, and heat-assisted amorphization of hematite and silica-rich host rock that weaken the fault and promote rupture propagation. Hematite (U-Th)/He dates document episodes of mineralization and fault slip between 0.65 and 0.36 Ma at ∼300 m depth. Data illustrate that some earthquake ruptures repeatedly propagate along localized slip surfaces in the shallow crust and provide structural and material property constraints for in models of fault slip.

Controlled Subject

Earthquakes; Seismology

Disciplines

Geology | Geophysics and Seismology

File Format

pdf

File Size

4110 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS