Document Type
Annual Report
Publication Date
2005
Publisher
University of Nevada, Las Vegas
Publisher Location
Las Vegas (Nev.)
First page number:
50
Last page number:
51
Abstract
Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.
In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to stainless steel.
Thus, for long term reliability of the structures, it is necessary to provide some protection of the steel surface from corrosion, without affecting the bulk properties of the steel. One such technique that has been well investigated is the use of oxygen control at the surface of the steel, which maintains a coating of oxide layer that protects the steel surface. The protective layer forms due to the higher affinities of the steel alloying components to oxygen compared to lead and bismuth. While the oxygen control technique works effectively at lower temperatures, it is not appropriate for higher operational temperatures (500-600oC), which is becoming increasingly important. Thus, it is necessary to develop alternative techniques for corrosion protection of steel that will perform reliably at elevated temperatures and under thermal cycling in LBE.
Keywords
Aluminum oxide; Chromium; Corrosion and anti-corrosives; Eutectic alloys; Lead-bismuth alloys; Nanostructured materials; Nuclear reactors — Materials — Testing; Protective coatings; Steel — Corrosion
Controlled Subject
Corrosion and anti-corrosives--Testing; Eutectic alloys; Nuclear reactors--Materials--Testing
Disciplines
Materials Science and Engineering | Metallurgy | Nanoscience and Nanotechnology | Nuclear Engineering | Oil, Gas, and Energy
File Format
File Size
154 KB
Language
English
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Repository Citation
Das, B.
(2005).
Development of Nanostructure Based Corrosion-Barrier Coatings on Steel for Transmutation Applications.
50-51.
Available at:
https://digitalscholarship.unlv.edu/hrc_trp_sciences_materials/150
Included in
Metallurgy Commons, Nanoscience and Nanotechnology Commons, Nuclear Engineering Commons, Oil, Gas, and Energy Commons
Comments
Incomplete paper data.