Document Type

Annual Report

Publication Date

2004

Publisher

University of Nevada, Las Vegas

Publisher Location

Las Vegas (Nev.)

First page number:

14

Last page number:

15

Abstract

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure.

There are two subtasks to this research. The first subtask develops the necessary tools to predict the levels of oxygen and corrosion products close to the boundary layer using Computational Fluid Dynamics (CFD) modeling. The second subtask predicts the corrosion process kinetics between the LBE and structural materials by incorporating pertinent information from the first subtask.

Keywords

Chemical kinetics; Cavitation erosion; Computational fluid dynamics; Corrosion and anti-corrosives; Eutectic alloys; Hydrodynamics; Lead-bismuth alloys; Lead-bismuth eutectic; Metals — Oxidation; Nuclear reactors — Materials — Testing; Oxygen; Steel — Corrosion

Controlled Subject

Chemical kinetics; Computational fluid dynamics; Steel--Corrosion

Disciplines

Materials Chemistry | Materials Science and Engineering | Metallurgy | Nuclear Engineering | Oil, Gas, and Energy

File Format

pdf

File Size

130 KB

Language

English

Comments

Publication date uncertain; circa 2004 to 2005.

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Share

COinS