Mesh Generation and Numerical Simulation of Fluid Entering a Large Tube Bundle
Document Type
Article
Publication Date
1996
Publication Title
Journal of Thermophysics and Heat Transfer
Volume
10
Issue
1
First page number:
109
Last page number:
118
Abstract
A three-dimensional finite element model is used to calculate fluid entering a tank containing a large array of tubes (assemblies). The time-dependent primitive equations of fluid motion are solved using equal order, isoparametric hexahedral elements. Petrov-Galerkin weighting, mass lumping, and reduced integration are utilized with explicit time marching. The tank is 7.5m tall by 6.7m in diameter, and contains a total of 600 tubes, consisting primarily of 10.8-cm-diam assemblies with some 2.5-cm-diam control rods. The 10.8-cm assemblies are hollow and thin shelled; the 2.5-cm control rods are solid. The fluid first flows into plenum, then begins to drain into the assemblies, which are positioned below the plenum; the fluid subsequently discharges from the ends of the assemblies near the bottom of the tank and recirculates within the tank prior to returning to the plenum. A total of 623,040 elements was used to discretize the plenum and tank vessel. Over 30 MW of storage were required to execute the problem on Cray Y-MP, necessitating the use of a special Cray sparse matrix solver. The numerical results predict a marked decrease in the amount of fluid available to the interior tubes.
.
Keywords
Fluid mechanics; Heat – Convection; Heat exchangers; Mathematical models
Disciplines
Aerodynamics and Fluid Mechanics | Heat Transfer, Combustion | Mechanical Engineering
Language
English
Permissions
Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.
Repository Citation
Pepper, D. W.,
Dyne, B. R.
(1996).
Mesh Generation and Numerical Simulation of Fluid Entering a Large Tube Bundle.
Journal of Thermophysics and Heat Transfer, 10(1),
109-118.