An IPMC-Enabled Bio-Inspired bending/twisting Fin for Underwater Applications
Document Type
Article
Publication Date
2013
Publication Title
Smart Materials and Structures
Volume
22
Issue
1
First page number:
014003
Last page number:
014003
Abstract
This paper discusses the design, fabrication, and characterization of an ionic polymer–metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a 'fin') is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or 'activating' the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long× 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s−1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These results suggest that such IPMC-enabled fin designs can be used for developing active propeller blades or control surfaces on underwater vehicles.
Keywords
Actuators; Blades; Metal-filled plastics; Propellers; Submersibles
Disciplines
Materials Science and Engineering | Mechanical Engineering | Ocean Engineering | Structural Materials
Language
English
Permissions
Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.
Repository Citation
Palmre, V.,
Hubbard, J. J.,
Fleming, M.,
Pugal, D.,
Kim, S.,
Kim, K. J.,
Leang, K. K.
(2013).
An IPMC-Enabled Bio-Inspired bending/twisting Fin for Underwater Applications.
Smart Materials and Structures, 22(1),
014003-014003.