Selecting Critical Clinical Features for Heart Diseases Diagnosis with a Real-coded Genetic Algorithm
Document Type
Article
Publication Date
3-2008
Publication Title
Applied Soft Computing
Volume
8
Issue
2
First page number:
1105
Last page number:
1111
Abstract
In clinic, normally a lot of diagnostic features are recorded from a patient for a certain disease. It will be beneficial for the prompt and correct diagnosis of the disease by selecting the important and relevant features and discarding those irrelevant and redundant ones. In this paper, a real-coded genetic algorithm (GA)-based system is proposed to select the critical clinical features essential to the heart diseases diagnosis. The heart disease database used in this study includes 352 cases, and 40 diagnostic features were recorded for each case. Using the proposed genetic algorithm, 24 critical features have been identified, and their corresponding diagnosis weights for each heart disease of interest have been determined. The critical diagnostic features and their clinic meanings are in sound agreement with those used by the physicians in making their clinic decisions.
Keywords
Genetic algorithms; Diagnosis; Differential; Machine learning; Medical care--Decision making
Disciplines
Analytical, Diagnostic and Therapeutic Techniques and Equipment | Electrical and Computer Engineering | Health Information Technology | Other Biomedical Engineering and Bioengineering
Language
English
Permissions
Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.
Repository Citation
Yan, H.,
Zheng, J.,
Jiang, Y.,
Peng, C.,
Xiao, S.
(2008).
Selecting Critical Clinical Features for Heart Diseases Diagnosis with a Real-coded Genetic Algorithm.
Applied Soft Computing, 8(2),
1105-1111.