Biodegradation Studies and Sequencing of Microcystin-LR Degrading Bacteria Isolated from a Drinking Water Biofilter and a Fresh Water Lake

Document Type



The presence of microcystin-LR -degrading bacteria in an active anthracite biofilter and in Lake Mead, Nevada was investigated. Four bacterial isolates from enrichment culture were identified using 16S rRNA analysis. Microcystin biodegradation tests were performed with both, the enrichment cultures and the respective isolates, using microcystin alone and acetate as carbon sources. A newly recognized microcystin-degrading bacterium, Morganella morganii, was isolated from the biofilter and from Lake Mead. The results of the biodegradation tests indicated that addition of a carbon source (acetate), significantly repressed the degradation of microcystin-LR. The findings of this study inform on the prevalence of microcystin-degrading bacteria in the environment indicating bioaugmentation may not be needed, if biofiltration is used to remove microcystin from waters. The results also imply that, in a biofilter, biodegradable naturally organic matter (NOM) and microcystin will compete and therefore lower toxin removals are likely in waters with higher NOM content. The feasibility of removing microcystin by biofiltration depends on the toxin concentration and the concentration of biodegradable carbon sources in the biofilter.


Algal toxins; Biodegradation; Biodegradation—Testing; Biofilter; Microcystin-LR; Microcystins; Proteus morganii; Water--Purification--Fixed-film biological process


Civil and Environmental Engineering | Civil Engineering | Construction Engineering and Management | Environmental Sciences | Structural Engineering | Water Resource Management


Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library