An On-Board Spectral-CT/CBCT/SPECT Imaging Configuration for Small-Animal Radiation Therapy Platform: A Monte Carlo Study

Document Type


Publication Date


Publication Title

IEEE Transactions on Medical Imaging





First page number:


Last page number:



This study investigated the feasibility of a highly specific multiplexed image-guided small animal radiation therapy (SART) platform based on triple imaging from on-board single-photon emission computed tomography (SPECT), spectral-CT, and cone-beam CT (CBCT) guidance in radiotherapy treatment. As a proof-of-concept, the SART system was built with the capability of triple on-board image guidance by utilizing an x-ray tube and a single cadmium zinc telluride (CZT) semiconductor photon-counting imager via a Monte Carlo simulation study. The x-ray tube can be set at a low tube current for imaging mode and a high tube current for radiation therapy mode, respectively. In the imaging mode, both x-ray and gamma-ray projection data were collected by the imager to reconstruct CBCT, SPECT and spectral CT images of small animals being treated. The modulation transfer function (MTF) of the pixelated CZT imager measured was 8.6 lp/mm. The overall performances of the CBCT and SPECT imaging of the system were evaluated with sufficient spatial resolution and imaging quality to be fitted into the SART platform. The material differentiation and decomposition capacities of spectral CT within the system were verified using K-edge imaging, image-based optimal energy weighted imaging, and image-based linear material decomposition methods. The triple imaging capability of the system was demonstrated using a PMMA phantom containing gadolinium, iodine and radioisotope 99m Tc inserts. All the probes were clearly identified in the registered image. The results demonstrated that a novel SART platform with high-quality on-board CBCT, spectral-CT, SPECT image guidance is technically feasible by using a single semiconductor imager, thus affording comprehensive image guidance from anatomical, functional, and molecular levels for radiation treatment beam delivery.


Bioimaging and Biomedical Optics | Radiology



UNLV article access

Search your library