Mathematical and Numerical Study of Wave Propagation in Negative-Index Materials

Document Type



In this paper, we develop a Crank–Nicolson mixed finite element method for modeling wave propagation in negative-index materials (NIMs). The NIMs model is formed as a time-dependent system involving four dependent vector variables: the electric and magnetic fields, and the induced electric and magnetic currents. Optimal error estimates for all four variables are proved for Nédélec edge elements. Numerical examples are presented to show the exotic properties for wave propagation in NIMs.


Electromagnetics and Photonics | Engineering | Engineering Physics | Mathematics | Mechanical Engineering | Numerical Analysis and Computation | Partial Differential Equations


Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library