Transplantation of Human Umbilical Cord Blood–Derived Cellular Fraction Improves Left Ventricular Function and Remodeling After Myocardial Ischemia/Reperfusion

Document Type


Publication Date


Publication Title

Circulation Research






Rationale: Human umbilical cord blood (hUCB) contains diverse populations of stem/progenitor cells. Whether hUCB-derived nonhematopoietic cells would induce cardiac repair remains unknown.

Objective: To examine whether intramyocardial transplantation of hUCB-derived CD45 Lin nonhematopoietic cellular fraction after a reperfused myocardial infarction in nonimmunosuppressed rats would improve cardiac function and ameliorate ventricular remodeling.

Methods and Results: Nonhematopoietic CD45−Lin− cells were isolated from hUCB. Flow cytometry and quantitative polymerase chain reaction were used to characterize this subpopulation. Age-matched male Fischer 344 rats underwent a 30-minute coronary occlusion followed by reperfusion and 48 hours later received intramyocardial injection of vehicle or hUCB CD45−Lin− cells. After 35 days, compared with vehicle-treated rats, CD45−Lin− cell–treated rats exhibited improved left ventricular function, blunted left ventricular hypertrophy, greater preservation of viable myocardium in the infarct zone, and superior left ventricular remodeling. Mechanistically, hUCB CD45−Lin− cell injection favorably modulated molecular pathways regulating myocardial fibrosis, cardiomyocyte apoptosis, angiogenesis, and inflammation in postinfarct ventricular myocardium. Rare persistent transplanted human cells could be detected at both 4 and 35 days after myocardial infarction.

Conclusion: Transplantation of hUCB-derived CD45−Lin− nonhematopoietic cellular subfraction after a reperfused myocardial infarction in nonimmunosuppressed rats ameliorates left ventricular dysfunction and improves remodeling via favorable paracrine modulation of molecular pathways. These findings with human cells in a clinically relevant model of myocardial ischemia/reperfusion in immunocompetent animals may have significant translational implications.Visual Overview: An online visual overview is available for this article.


Medicine and Health Sciences



UNLV article access