Effects of fire on water and salinity relations of riparian woody taxa

Document Type

Article

Publication Date

1993

Publication Title

Oecologia

Volume

94

Issue

2

First page number:

186

Last page number:

194

Abstract

Water and salinity relations were evaluated in recovering burned individuals of the dominant woody taxa from low-elevation riparian plant communities of the southwestern U.S. Soil elemental analyses indicated that concentrations of most nutrients increased following fire, contributing to a potential nutrient abundance but also elevated alluvium salinity. Boron, to which naturalized Tamarix ramosissima is tolerant, was also elevated in soils following fire. Lower moisture in the upper 30 cm of burned site soil profiles was attributed to shifts in evapotranspiration following fire. Higher leaf stomatal conductance occurred in all taxa on burned sites. This is apparently due to higher photosynthetic partially mitigated by reduced unit growth in resprouting burned individuals. Predawn water potentials varied little among sites, as was expected for plants exhibiting largely phreatophytic water uptake. Midday water potentials in recovering Salix gooddingii growing in the Colorado River floodplain reached levels which are considered stressful. Decreased hydraulic efficiency was also indicated for this species by examining transpiration water potential regressions. Recovering, burned Tamarix and Tessaria sericea had enriched leaf tissue δ13C relative to unburned controls. Higher water use efficiency following fire in these taxa may be attributed to halophytic adaptations, and to elevated foliar nitrogen in Tessaria. Consequently, mechanisms are proposed which would facilitate increased community dominance of Tamarix and Tessaria in association with fire. The theory that whole ecosystem processes are altered by invading species may thus be extended to include those processes related to disturbance.

Keywords

Carbon isotopes; Soil elements; Southwestern U.S.; Transpiration; Water potential; Tamarisk; Salt cedar

Disciplines

Plant Sciences

Language

English

UNLV article access

Search your library

Share

COinS