Award Date
5-2011
Degree Type
Thesis
Degree Name
Master of Science in Computer Science
Department
Computer Science
First Committee Member
Kazem Taghva, Chair
Second Committee Member
Ajoy K. Datta
Third Committee Member
Laxmi P. Gewali
Graduate Faculty Representative
Venkatesan Muthukumar
Number of Pages
69
Abstract
A Hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. HMM is an extremely flexible tool and has been successfully applied to a wide variety of stochastic modeling tasks. One of the first applications of HMM is speech recognition. Later they came to be known for their applicability in handwriting recognition, part-of-speech tagging and bio-informatics.
In this thesis, we will explain the mathematics involved in HMMs and how to efficiently perform HMM computations using dynamic programming (DP) which makes it easy to implement HMM. We will also address the practical issues associated with the use of HMM like numerical scaling of conditional probabilities to model long sequences and smoothing of poor probability estimates caused by sparse training data.
Keywords
Dynamic programming; Hidden Markov models; Programming (Mathematics); Stochastic models
Disciplines
Computer Sciences | Statistics and Probability | Theory and Algorithms
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Tatavarty, Usha Ramya, "Implementation of numerically stable hidden Markov model" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1018.
http://dx.doi.org/10.34917/2362226
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/