Award Date
12-2011
Degree Type
Thesis
Degree Name
Master of Science in Geoscience
Department
Geoscience
First Committee Member
Pamela Burnley, Chair
Second Committee Member
Michael Wells
Third Committee Member
Sean Mulcahy
Graduate Faculty Representative
Andrew Cornelius
Number of Pages
142
Abstract
Olivine is the most common and the weakest mineral in the upper mantle. Thus the strength of olivine controls the rheology of the earth's upper mantle. The rheology of olivine in the upper mantle has important implications for mantle flow, mountain building, and rates of isostatic adjustment. Recent experimental measurements of the flow strength of deformed olivine polycrystals have assumed a homogeneous state of stress. X-ray synchrotron diffraction experiments have implied that this assumption is not always valid. Elastic Plastic Self Consistent (EPSC) modeling offers an approach to estimating the flow strength of olivine that does not assume a homogeneous stress state. However, for EPSC models of olivine to work properly, all single crystal deformation modes must be considered. Kinking is a deformation mechanism that can be incorporated into the EPSC model to potentially improve the accuracy of the model's output relative to lattice plane diffraction measurements. For this purpose, the geometry of kink bands from deformed Mg2GeO4 olivine polycrystals is characterized using Electron Backscatter Diffraction (EBSD). A range of kink angles is observed from 19º to 68º. The slip system associated with the kink bands in the Mg2GeO4 grains is (100) [001].
Keywords
Dislocations in crystals; Earth — Mantle; Earth sciences; Germanate; Kink; Microstructure; Plasticity; Rheology; Rock deformation; Olivine
Disciplines
Geochemistry | Geology | Mineral Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Drue, Alex Gregory, "Microstructural characterization of kinked germanate olivine grains" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1310.
http://dx.doi.org/10.34917/3027715
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/