Award Date
5-2004
Degree Type
Thesis
Degree Name
Master of Science in Mechanical Engineering (MSME)
Department
Mechanical Engineering
First Committee Member
Mohamed B Trabia, Chair
Second Committee Member
William Culbreth
Third Committee Member
Ajit K. Roy
Fourth Committee Member
Robert A. Schill
Number of Pages
176
Abstract
Niobium cavities are important component of the linear accelerators. Researchers have concluded that buffered chemical polishing on the inner surface of the cavity improves its performance. However the mechanism of chemical polishing is not well understood. A finite element computational fluid dynamics (CFD) model was developed to simulate the fluid flow characteristics of chemical etching process inside the cavity. The CFD model is then used to optimize the baffle design. The analysis confirmed the observation of other researchers that the iris section of the cavity received more etching than the equator regions. The baffle, which directs flow towards the walls of the cavity, was redesigned using optimization techniques. The redesigned baffle significantly improves the performance of the etching process. To verify these results an experimental setup for flow visualization was created. The setup consists of a high speed, high resolution CCD camera. The camera is positioned by a computer controlled traversing mechanism. A dye injecting arrangement is used for tracking the fluid path. The Experimental results are, in general, in agreement with the CFD and the optimization data.
Keywords
Etching; Harry Reid Center; Holes; Linear accelerators; Niobium – Surfaces; Surfaces (Technology)
Disciplines
Dynamics and Dynamical Systems | Materials Science and Engineering | Mechanics of Materials | Nuclear Engineering
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Subramanian, Sathish K., "Modeling, Optimization, and Flow Visualization of Chemical Etching Process in Niobium Cavities" (2004). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1495.
http://dx.doi.org/10.34917/3939193
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Included in
Dynamics and Dynamical Systems Commons, Materials Science and Engineering Commons, Mechanics of Materials Commons, Nuclear Engineering Commons
Comments
Incomplete paper data