Award Date
12-1-2012
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Physics and Astronomy
First Committee Member
Bernard Zygelman
Second Committee Member
Tao Pang
Third Committee Member
Michael Pravica
Fourth Committee Member
Kathleen Robins
Number of Pages
73
Abstract
The Born-Oppenheimer approximation has long been the standard approach to solving the Schrödinger equation for diatomic molecules. In it, nuclear and electronic motions are separated into "slow" and "fast" degrees of freedom and couplings between the two are ignored. The neglect of non-adiabatic couplings leads to an incomplete description of diatomic motion, and in a more refined approach, non-adiabatic couplings are uncoupled by transforming the angular momentum of the molecule and electrons into the body-fixed frame.
In this thesis we examine a "modern" form of the Born-Oppenheimer approximation by exploiting a gauge theoretic approach in a description of molecular motion. This procedure is described by a U(1) gauge field theory which we call the gauge covariant Born-Oppenheimer approximation. Using this approach we show that the non-adiabatic coupling terms are reproduced and manifest as an effective magnetic monopole vector potential that gives rise to an effective Lorentz type force.
Keywords
Adiabatic; Born-Oppenheimer approximation; Degree of freedom; Diatomic molecules; Energy transfer; Gauge theory; Magnetic monopoles; Molecular Hamiltonian; Quantum theory
Disciplines
Atomic, Molecular and Optical Physics | Quantum Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Colarch, Gregory, "A Gauge Theoretic Treatment of Rovibrational Motion in Diatoms" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1717.
http://dx.doi.org/10.34917/4332698
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/