Award Date

5-1-2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Mechanical Engineering

Department

Mechanical Engineering

First Committee Member

Yitung Chen

Second Committee Member

William Culbreth

Third Committee Member

Mohamed Trabia

Fourth Committee Member

Robert F. Boehm

Fifth Committee Member

Jichun Li

Number of Pages

127

Abstract

This dissertation deals with the development of a three-dimensional computational model of water transport phenomena in the cathode catalyst layer (CCL) of PEMFCs. The catalyst layer in the numerical simulation was developed using the optimized sphere packing algorithm. The optimization technique named the adaptive random search technique (ARSET) was employed in this packing algorithm. The ARSET algorithm will generate the initial location of spheres and allow them to move in the random direction with the variable moving distance, randomly selected from the sampling range, based on the Lennard-jones potential of the current and new configuration. The solid fraction values obtained from this developed algorithm are in the range of 0.631 to 0.6384 while the actual processing time can significantly be reduced by 8% to 36% based on the number of spheres. The initial random number sampling range was investigated and the appropriate sampling range value is equal to 0.5.

This numerically developed cathode catalyst layer has been used to simulate the diffusion processes of protons, in the form of hydronium, and oxygen molecules through the cathode catalyst layer. The movements of hydroniums and oxygen molecules are controlled by the random vectors and all of these moves has to obey the Lennard-Jones potential energy constrain. Chemical reaction between these two species will happen when they share the same neighborhood and result in the creation of water molecules. Like hydroniums and oxygen molecules, these newly-formed water molecules also diffuse through the cathode catalyst layer. It is important to investigate and study the distribution of hydronium oxygen molecule and water molecules during the diffusion process in order to understand the lifetime of the cathode catalyst layer. The effect of fuel flow rate on the water distribution has also been studied by varying the hydronium and oxygen molecule input. Based on the results of these simulations, the hydronium: oxygen input ratio of 3:2 has been found to be the best choice for this study.

To study the effect of metal impurity and gas contamination on the cathode catalyst layer, the cathode catalyst layer structure is modified by adding the metal impurities and the gas contamination is introduced with the oxygen input. In this study, gas contamination has very little effect on the electrochemical reaction inside the cathode catalyst layer because this simulation is transient in nature and the percentage of the gas contamination is small, in the range of 0.0005% to 0.0015% for CO and 0.028% to 0.04% for CO2. Metal impurities seem to have more effect on the performance of PEMFC because they not only change the structure of the developed cathode catalyst layer but also affect the movement of fuel and water product. Aluminum has the worst effect on the cathode catalyst layer structure because it yields the lowest amount of newly form water and the largest amount of trapped water product compared to iron of the same impurity percentage. For the iron impurity, it shows some positive effect on the life time of the cathode catalyst layer. At the 0.75 wt% of iron impurity, the amount of newly formed water is 6.59% lower than the pure carbon catalyst layer case but the amount of trapped water product is 11.64% lower than the pure catalyst layer. The lifetime of the impure cathode catalyst layer is longer than the pure one because the amount of water that is still trapped inside the pure cathode catalyst layer is higher than that of the impure one. Even though the impure cathode catalyst layer has a longer lifetime, it sacrifices the electrical power output because the electrochemical reaction occurrence inside the impure catalyst layer is lower.

Keywords

Algorithms; Monte Carlo method; Proton exchange membrane fuel cells; Sphere packings; Transport theory

Disciplines

Chemical Engineering | Mechanical Engineering | Oil, Gas, and Energy

File Format

pdf

Degree Grantor

University of Nevada, Las Vegas

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Share

COinS