Award Date
12-1-2014
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physics and Astronomy
First Committee Member
Yusheng Zhao
Second Committee Member
Oliver Tschauner Tschauner
Third Committee Member
Changfeng Chen
Fourth Committee Member
Clemens Heske
Number of Pages
150
Abstract
Lithium-Rich Antiperovskites (LiRAPs) have been shown to possess relatively high ionic conductivity at room temperature, and become superionic conductors at elevated temperatures. These materials generally have a stoichiometry Li3BX, where B is a doubly deficient anion, and X is a monovalent anion. Ideally they belong to the high symmetry space group Pm-3m where lithium atoms occupy octahedral corners, B anions occupy octahedral centers, and X anions occupy the interstitial centers between the octahedra. LiRAPs were synthesized using several different methods and characterized by XRD, EIS, DSC, TGA, FTIR, and INS techniques. Chemical analyses were performed to determine the stoichiometries of the base compounds Li3OCl, Li2(OH)Cl, and Li2(OH)Br. Ionic conductivities range from 2 x 10-5 S/cm to 2 x 10-9 S/cm at room temperature, and activation energies of Li+ diffusion range from 0.49 eV to 1.02 eV.
Keywords
Chemical structure; Electric conductivity; Ionic mobility; Lithium compounds; Superionic conductors
Disciplines
Atomic, Molecular and Optical Physics | Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Howard, John William, "Li+ Ion Transport in Select Lithium-Rich Antiperovskites" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2269.
http://dx.doi.org/10.34917/7048588
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/