Award Date
12-1-2014
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematical Sciences
First Committee Member
Zhonghai Ding
Second Committee Member
David Costa
Third Committee Member
Hossein Tehrani
Fourth Committee Member
Pushkin Kachroo
Number of Pages
107
Abstract
It is well known that suspension bridges may display certain oscillations under external aerodynamic forces. Since the collapse of the Tacoma Narrows suspension bridge in 1940, suspension bridge models have been studied by many researchers. Based upon the fundamental nonlinearity in suspension bridges that the stays connecting the supporting cables and the roadbed resist expansion, but do not resist compression, new models describing oscillations in suspension bridges have been developed by Lazer and McKenna [Lazer and McKenna (1990)]. Except for a paper by Leiva [Leiva (2005)], there have been very few work on controls of the Lazer-McKenna suspension bridge models in the existing literature. In this dissertation, I use the Hilbert Uniqueness Method and the Leray-Schauder's degree theory to study two exact controllability problems of the Lazer-McKenna suspension bridge equation.
The first problem is to study the exact controllability of the single Lazer-McKenna suspension bridge equation with a locally distributed control. Unlike most of the existing literatures on exact controllability of nonlinear systems where the nonlinearity was always assumed to be C^1-smooth, the nonlinearity in the Lazer-McKenna suspension bridge equation is not C^1-smooth, which makes the exact controllability problem challenging to study. It is proved that the control system is exactly controllable. The key step is to establish an observability inequality of the auxiliary linear control problem. The proof of such an inequality relies on deriving a Carleman estimate.
The second problem studied in this dissertation is the exact controllability problem of the single Lazer-McKenna suspension bridge equation with a piezoelectric bending actuator. It is proved that the control system is exactly controllable when the location of the actuator is carefully chosen. The proof of exact controllability is based upon establishing an Ingham inequality for nonharmonic Fourier series.
Keywords
Actuators; Bridge failures – Prevention; Control; PDEs; Oscillations; Piezoelectric devices; Suspension bridges
Disciplines
Civil Engineering | Mathematics | Transportation Engineering
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Yu, Lanxuan, "Exact Controllability of the Lazer-McKenna Suspension Bridge Equation" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2317.
http://dx.doi.org/10.34917/7048636
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS