Award Date
8-1-2015
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Electrical Engineering
First Committee Member
Rama Venkat
Second Committee Member
Ravhi S. Kumar
Third Committee Member
Clemens Heske
Fourth Committee Member
Venkatesan Muthukumar
Fifth Committee Member
Ke-Xun Sun
Sixth Committee Member
Thomas Hartmann
Number of Pages
149
Abstract
Layered structured materials such as transition metal dichalcogenides (TMDs) have gained immense interest in recent times due to their exceptional structural, electrical and optical properties. Recent studies show semiconducting TMDs such as MX2 (M= Mo, W & X = S, Se) could be used as potential shock absorbing material, which has resulted in extensive studies on structural stability of these materials under the influence of high pressure. Understanding the structural stability of transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 under high pressure has been very challenging due to contradicting observations and interpretations reported in the past. Hence, the main objective of this work is to study the crystal structure and optical properties of bulk MX2 at high hydrostatic pressures up to 51 GPa using a diamond anvil cell with synchrotron radiation in addition to high pressure Raman spectroscopic and high temperature X-ray diffraction (XRD) experiments. Crystal structures of MX2 materials are observed to be stable up to 500 oC with nonlinear thermal coefficients of expansion. Results of high pressure experiments show a pressure induced isostructural hexagonal distortion to a 2Ha-hexagonal P63/mmc phase, in MoS2 around 26 GPa as predicted by theoretical calculations reported earlier. No pressure induced phase transformation is observed in other MX2 (MoSe2, WS2, WSe2). A semi empirical model based on the energy of interaction of bond electrons is proposed to explain the observed inconsistency between MoS2 and other TMDs studied. Using this model, it is shown that except MoS2, no other MX2 within the scope of this study undergoes pressure induced phase transition in the pressure range 0 – 50 GPa. High pressure Raman results show continuous red shifts in dominant vibrational modes with increase in pressure in MX2. Additionally, emergence of a new peak, namely ‘d - band’ associated with 2Ha structure in MoS2 supports the observation of a isostructural phase transition in high pressure X-ray diffraction experiments. In addition to the studies on bulk MoS2 material, thin film (approximately 100 nm thicknesses) is successfully fabricated via DC magnetron sputtering system and sulfurization technique.
Keywords
High Pressure experiments; High Pressure Structural and Raman Experiements; MoS2; WS2; MoSe2; WSe2; Sputtering; Thin Films; Transition Metal Dichalcogenides
Disciplines
Electrical and Computer Engineering | Engineering Science and Materials | Materials Science and Engineering | Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Bandaru, Nirup Reddy, "Structure and Optical properties of Transition Metal Dichalcogenides (TMDs) – MX2 (M = Mo, W & X = S, Se) under High Pressure and High Temperature conditions" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2465.
http://dx.doi.org/10.34917/7777293
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Included in
Electrical and Computer Engineering Commons, Engineering Science and Materials Commons, Materials Science and Engineering Commons, Physics Commons