Award Date

Spring 2013

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Engineering

Department

Civil and Environmental Engineering

Advisor 1

Aly M Said

First Committee Member

Samaan G Ladkany

Second Committee Member

Ying Tian

Third Committee Member

Spencer M Steinberg

Fourth Committee Member

Brendan J O'Toole

Number of Pages

158

Abstract

Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques - including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) - were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing of accelerated mortar-bar and strength. Furthermore, this study investigated the deterioration of concrete caused by salt crystallization in concrete pores. This physical effect of salt on concrete may cause significant damage under certain environmental conditions in regions where soil is laden with large amounts of certain salts. The effect of nano-silica on this special type of environmental attack was explored by means of a new non-standard testing procedure, including the simulation of changing seasons, on concrete specimens partially immersed in salt solution. These concrete specimens represented concrete structures with foundations in salt-rich soils.

Keywords

Alkali-Silica Reaction; Fly Ash; Nanotechnology; Physical Salt Attack; Pozzolans

Disciplines

Civil and Environmental Engineering

File Format

pdf

Degree Grantor

University of Nevada, Las Vegas

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Share

COinS