Award Date
5-1-2015
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Kinesiology and Nutrition Sciences
First Committee Member
Janet S. Dufek
Second Committee Member
John A. Mercer
Third Committee Member
Gabriele Wulf
Fourth Committee Member
Sheniz Moonie
Number of Pages
235
Abstract
Variability is an intrinsic characteristic of human movement, with hypothesized connections to neuromotor functioning and mechanisms of injury. The purpose of this study was to evaluate changes in movement variability among kinematic, kinetic, and electromyographic (EMG) variables following mechanical task demand manipulations during single-leg drop landings. Biomechanical outcome variables included 3 kinematic (sagittal, hip, knee, and ankle angles), 4 kinetic (sagittal hip, knee, ankle moments and vertical ground reaction force; GRFz), and 5 EMG variables (gluteus maximus, vastus medialis, biceps femoris, medial gastrocnemius, and tibialis anterior muscles). Mechanical task demands were altered using load and landing height manipulations, computed as percentages of participant anthropometrics (bodyweight: BW, BW+12.5%, BW+25%, and height: H12.5% and H25%, respectively). Fewer emergent strategies were identified under greater mechanical task demands, defined using the load accommodation strategies model, alongside decreased movement variability, assessed using principal component analysis (PCA). Joint-specific biomechanical adjustments were identified, highlighting mechanisms for the observed load accommodation strategies and changes in movement variability. An increasingly upright landing posture was observed under greater mechanical task demands, decreasing effective landing height and reducing landing impulse. Alterations in movement variability were interpreted in the context of the available functional degrees of freedom at each lower extremity joint, aligning with physiological predictions and theories from motor control. The holistic approach taken in this investigation provided a more complete understanding of mechanisms contributing to changes in movement variability and factors that may underlie landing injuries.
Keywords
electromyography; kinematics; kinetics; principal component analysis; synergy; variability
Disciplines
Kinesiology
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Nordin, Andrew D., "Investigating single-leg landing strategies and movement control across changes in task demands" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2825.
http://dx.doi.org/10.34917/9419965
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/