Award Date
2009
Degree Type
Thesis
Degree Name
Master of Science in Mechanical Engineering (MSME)
Department
Mechanical Engineering
Advisor 1
Robert Boehm, Committee Chair
First Committee Member
Yitung Chen
Second Committee Member
Dan Cook
Graduate Faculty Representative
Yahia Baghzouz
Number of Pages
95
Abstract
The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy from the sun into steam. The steam is utilized in a traditional Rankine cycle power plant. The most commercially accepted thermal storage design is an indirect two-tank molten salt storage system where molten salt interacts with the solar field heat transfer fluid (HTF) through a heat exchanger. The molten salt remains in a closed loop with the HTF and the HTF is the heat source for steam generation. An alternate indirect two tank molten salt storage system was proposed where the molten salt was utilized as the heat source for steam generation. A quasi-steady state simulation code was written to analyze the key environmental inputs and operational parameters: solar radiation, solar field size, thermal storage system, heat exchangers, and power block. A base case with no thermal storage was modeled using design parameters from the SEGS VI plant and the effects of solar field size were analyzed. The two differing indirect two-tank molten salt storage designs were modeled and their solar field size and thermal storage capacity were treated as parameters. Results present three days of distinct weather conditions for Las Vegas, Nevada. Annual and monthly electricity generation was analyzed and the results favor the thermal storage case with the solar field HTF interacting with steam. Additionally, the economic trade offs for the three arrangements and speculation of operating strategies that may favor the alternate storage design is discussed.
Keywords
Molten salt storage system; Parabolic troughs; Rankine cycle power plant; Solar energy; Solar thermal parabolic trough plant; Thermal storage
Disciplines
Energy Systems | Mechanical Engineering | Oil, Gas, and Energy
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Kopp, Joseph E., "Two-tank indirect thermal storage designs for solar parabolic trough power plants" (2009). UNLV Theses, Dissertations, Professional Papers, and Capstones. 61.
http://dx.doi.org/10.34870/1375754
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/