Document Type

Technical Report

Publication Date

12-2006

Publisher

Nevada System of Higher Education

Abstract

This task is part of a cooperative agreement between the UNLV Research Foundation and the U.S. Department of Energy (#DE-FC28-04RW12237) titled “Yucca Mountain Groundwater Characterization”. The work was conducted in the Harry Reid Center for Environmental Studies, Microbiology Division of the University of Nevada, Las Vegas from October 1, 2004 to September 30, 2006. The overall goal of this research was to investigate the phenomena that affect the fate and transport of radionuclides in the environment. The purpose of this task (ORD-RF-01), “Characterization of Microbial Activity”, was to develop a molecular biological method for the characterization of the microbial population indigenous to the Yucca Mountain Project site, with emphasis in detection and measurement of species or groups of microorganisms that could be involved in actinide and/or metal reduction, and subsurface transport. To quantify and characterize the microbial populations, including microorganisms that may be viable but are not currently physiologically active, a molecular biological approach was utilized to amplify and detect microbial DNA present in the subsurface. This approach, termed polymerase chain reaction (PCR), results in the amplification of DNA sequences that are unique to the groups of microorganisms of interest. Quantitative PCR (QPCR) assays were developed and used for the measurement of subsurface microbial populations. The protocols were evaluated in laboratory tests involving representative microbial species and genera, and tested by assaying available subsurface samples previously collected from the Yucca Mountain Project site. Other subtasks included Quality Assurance (QA) planning and preparation, and a literature review. This work was subject to the Nevada System of Higher Education (NSHE) QA Program requirements.

Keywords

Groundwater; Microbial populations; Nevada – Yucca Mountain; Radioisotopes — Migration

Disciplines

Microbiology

Language

English

Comments

Signatures have been redacted for privacy and security measures.
Document Identifier: TR-06-007
Task No.: ORD-RF-01


Included in

Microbiology Commons

Share

COinS