Design, Fabrication, and Partial Characterization of a Solar Receiver and Air-Cooled Heat Exchanger for a Concentrated Solar Power Supercritical CO2 Testbed

Document Type

Article

Publication Date

3-26-2020

Publication Title

Journal of Solar Energy Engineering

Volume

142

Issue

6

First page number:

1

Last page number:

9

Abstract

This research details the design, fabrication, and partial testing of a concentrated solar receiver and an air-cooled heat exchanger. The solar receiver and heat exchanger have been fabricated for use in an experimental system that uses the supercritical carbon dioxide Brayton cycle. They are coupled with a Science Applications International Corporation (SAIC) solar dish 250× concentrator located on the University of Nevada, Las Vegas campus. The purpose of this solar-powered supercritical CO2 system is to function as a testbed for testing the cycle, system components, and alternate system configurations. Photographic flux mapping of the dish showed peak solar flux just above 200× and is used to appropriately size the receiver. Sun tests of the tubing, receiver, and air-cooled heat exchanger were performed achieving fluid temperatures in the range of 973 K (700 °C) using nitrogen in an open loop at low mass flowrates, and above 1173-K (900 °C) receiver wall temperatures in a no-flow case.

Keywords

Collector; Energy; Heat Transfer; Renewable; Solar; Solar Dish; Solar Receiver; Thermal Power

Language

English

UNLV article access

Search your library

Share

COinS