Document Type

Article

Publication Date

11-25-2019

Publication Title

Atmospheric Chemistry and Physics

Publisher

EGU

Volume

19

Issue

22

First page number:

14173

Last page number:

14193

Abstract

Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82+/-0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 +/- 38 g kg(-1)) and lowest (1073 +/- 63 g kg(-1)) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are similar to 12 %15 % and similar to 0.3 %0.9 % of EFCO2, in the range of 157171 and 310 g kg(-1), respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 +/- 4.8 and 4.7 +/- 3.1 g kg(-1) for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9+/-1.1 g kg(-1) for EFNOx (nitrogen oxides); and 2.4+/-1.4 and 2.0 +/- 0.7 g kg(-1) for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of similar to 2 and similar to 7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by > 4-fold (1461 g kg(-1)) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC / EFPM2.5 ratios in the range of 52 %98 % for fresh emissions and similar to 14 %23 % degradation after aging. Reductions of EFOC (similar to 79 g kg(-1)) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at < 140 degrees C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (similar to 16 g kg(-1)), with similar to 35 %50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for similar to 20 %62 % of fresh EFOC. The majority (> 95 %) of the total emitted carbon is in the gas phase, with 54 %75 % CO2, followed by 8 %30 % CO. Nitrogen in the measured species explains 24 %52 % of the consumed fuel nitrogen, with an average of 35 +/- 11 %, consistent with past studies that report similar to 1/3 to 2/3 of the fuel nitrogen measured in biomass smoke. The majority (> 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN center dot N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories.

Disciplines

Chemistry | Physical Sciences and Mathematics

File Format

pdf

File Size

3.411 KB

Language

English

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

UNLV article access

Search your library

Included in

Chemistry Commons

Share

COinS