Document Type


Publication Date


Publication Title

Atmospheric Chemistry and Physics







First page number:


Last page number:



Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82+/-0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 +/- 38 g kg(-1)) and lowest (1073 +/- 63 g kg(-1)) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are similar to 12 %15 % and similar to 0.3 %0.9 % of EFCO2, in the range of 157171 and 310 g kg(-1), respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 +/- 4.8 and 4.7 +/- 3.1 g kg(-1) for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9+/-1.1 g kg(-1) for EFNOx (nitrogen oxides); and 2.4+/-1.4 and 2.0 +/- 0.7 g kg(-1) for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of similar to 2 and similar to 7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by > 4-fold (1461 g kg(-1)) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC / EFPM2.5 ratios in the range of 52 %98 % for fresh emissions and similar to 14 %23 % degradation after aging. Reductions of EFOC (similar to 79 g kg(-1)) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at < 140 degrees C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (similar to 16 g kg(-1)), with similar to 35 %50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for similar to 20 %62 % of fresh EFOC. The majority (> 95 %) of the total emitted carbon is in the gas phase, with 54 %75 % CO2, followed by 8 %30 % CO. Nitrogen in the measured species explains 24 %52 % of the consumed fuel nitrogen, with an average of 35 +/- 11 %, consistent with past studies that report similar to 1/3 to 2/3 of the fuel nitrogen measured in biomass smoke. The majority (> 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN center dot N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories.


Chemistry | Physical Sciences and Mathematics

File Format


File Size

3.411 KB



Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

UNLV article access

Search your library

Included in

Chemistry Commons