Variable Structure Robust Flight Control System for the F-14

Document Type

Article

Publication Date

1-1997

Publication Title

Institute of Electrical and Electronics Engineers Transactions on Aerospace and Electronic Systems

Volume

33

Issue

1

First page number:

77

Last page number:

84

Abstract

In this paper, a flight control law for a simplified F-14 aircraft model is designed based on variable structure control(VSC) theory. For m-input, q-output linear uncertain systems (q < m),a VSC law is derived. For the derivation of the control law, a choice of a sliding surface is made so that the zero dynamics of the system are stable. The linear lateral and longitudinal dynamics of the F-14 are decoupled. This allows design of lateral and longitudinal flight controllers separately. An application of variable structure system (VSS) theory to control of lateral dynamics is presented. A control law is derived for the control of roll angle, lateral velocity, and yaw rate. The chosen sliding surface for the controller design is a linear function of the tracking error, its derivative, and the integral of the tracking error. Simulation results are presented to show that in the closed-loop system, precise bank angle trajectory tracking and regulation of lateral velocity and yaw rate can be accomplished in spite of aerodynamic parameter uncertainty.

Keywords

Flight control; Sliding mode control; Stability of airplanes

Permissions

Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited

UNLV article access

Search your library

Share

COinS