Document Type
Article
Publication Date
1993
Publication Title
IEEE Journal of Quantum Electronics
Volume
29
Issue
9
First page number:
2451
Last page number:
2458
Abstract
In the past, the quantum mechanical tunneling time through simple rectangular barrier has been obtained by various theoretical approaches including the dwell time, the phase delay time, the Larmor clock time and also using the numerical analysis of wave packets. The agreement among these approaches over a range of incident electron energy is far from satisfactory. In this manuscript, analytical expressions for the tunneling time are derived based on the group velocity approach (referred hereafter as the average particle time, τAPT) for single and double rectangular potential barriers under zero bias. The results of the single barrier case, including the limiting value of the tunneling time for various energy limits, are compared with these previous tunneling time calculations. The τAPT results provide physically meaningful tunneling times for zero and infinite incident energy limits of the electron. The τAPT for the double barrier structure is computed from the analytical solution as a function of the incident energy of the electron for two experimentally studied resonant tunneling structures. For both the single and double barrier cases, the effect of the structure parameters such as barrier width, height, and well width on the τAPT are obtained and reported.
Keywords
Laser beam cutting; Laser drilling; Laser theory; Numerical analysis; Semiconductor lasers; Tunneling (Physics)
Repository Citation
Thanikasalam, P.,
Venkat, R.,
Cahay, M.
(1993).
Analytical Expressions for Tunneling Time through Single and Double Barrier Structures.
IEEE Journal of Quantum Electronics, 29(9),
2451-2458.
https://digitalscholarship.unlv.edu/ece_fac_articles/29
Comments
©1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.