A Theoretical Study of Amorphouse-crystalline Transition in SI [111] MBE Growth

Document Type

Conference Proceeding

Publication Date

1992

Publication Title

Proceedings of the Materials Research Society

Publisher

Materials Research Society

Volume

280

First page number:

171

Last page number:

174

Abstract

The amorphous crystalline transition temperature for Si MBE growth is higher for [111] growth than for [100] growth. The mechanism for the growth of amorphous Si in [111] growth is thought to be due to the possibility of of direct formation of stacking faults on the [111] surface. To investigate this mechanism, a kinetic model describing the amorphous-crystalline transition in low temperature Si [111] MBE growth is proposed. The model allows Si atoms to incorporate at three types of sites: A, B and C where A is the triply covalent bonded correct diamond site, B is the triply covalent bonded wrong hcp site and C is the singly covalent bonded wrong site. The model allows for the migration of atoms from a wrong site to a nearest neighbor correct site through Arrhenius type rate equations. The migration from B -> A is assumed 1000 times weaker than the reverse migration process. Similarly migrations from C -> A are assumed 106 time stronger than the reverse migration. All possible migrations are considered with different rates. At the high temperature, the model will allow the growth of a perfect diamond cubic structure with correct ordering of layers AaBbCc etc. A stochastic model describing the above kinetic model is developed based on the master equation approach and random distribution approximation. The low temperature MBE growth of Si [111] is investigated using this model. The results of the model are compared with existing experimental work [1]. The results are in good agreement. The study shows that the kinetics of the site correcting migration process well describes the observed amorphous-crystalline transition in [111] Si MBE growth.

Keywords

Crystal growth; Crystal lattices; Molecular beam epitaxy; Semiconductors; Silicon

Permissions

Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited


Share

COinS