Shear Strengthening of Beam-Column Joints

Document Type

Article

Publication Date

7-2002

Publication Title

Engineering Structures

Volume

24

Issue

7

First page number:

881

Last page number:

888

Abstract

Shear failure of beam-column joints is identified as the principal cause of collapse of many moment-resisting frame buildings during recent earthquakes. Effective and economical rehabilitation techniques for the upgrade of the joint shear-resistance capacity in existing structures are needed. The objective of this research is to develop effective selective rehabilitation schemes for reinforced concrete beam-column joints using advanced composite materials. Several reinforced concrete beam-column joints were constructed. The joints were designed to simulate nonductile detailing characteristics of pre-seismic code construction. The control specimens showed joint shear failure when subjected to cyclic loading at the beam tip. Different fibre-wrap rehabilitation schemes were applied to the joint panel with the objective of upgrading the shear strength of the joint. The tested rehabilitation techniques were successful in improving the shear resistance of the joint and in eliminating or delaying the shear mode of failure.

Keywords

Beam-column joint; Buildings--Earthquake effects; Buildings--Earthquake effects—Standards; Concrete; Concrete beams; Experimental; FRP; Moment-resisting frame; Rehabilitation; Reinforced concrete; Repair; Seismic upgrade; Shear (Mechanics)

Disciplines

Civil and Environmental Engineering | Construction Engineering and Management | Geophysics and Seismology | Structural Engineering

Language

English

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS