Document Type

Article

Publication Date

12-19-2019

Publication Title

Water

Publisher

MDPI

Volume

12

Issue

1

First page number:

1

Last page number:

21

Abstract

One of the pressing issues currently faced by the water industry is incorporating sustainability considerations into design practice and reducing the carbon emissions of energy-intensive processes. Water treatment, an indispensable step for safeguarding public health, is an energy-intensive process. The purpose of this study was to analyze the energy consumption of an existing drinking water treatment plant (DWTP), then conduct a modeling study for using photovoltaics (PVs) to offset that energy consumption, and thus reduce emissions. The selected plant, located in southwestern United States, treats 0.425 m3 of groundwater per second by utilizing the processes of coagulation, filtration, and disinfection. Based on the energy consumption individually determined for each unit process (validated using the DWTP’s data), the DWTP was sized for PVs (as a modeling study). The results showed that the dependency of a DWTP on the traditional electric grid could be greatly reduced by the use of PVs. The largest consumption of energy was associated with the pumping operations, corresponding to 150.6 Wh m−3 for the booster pumps to covey water to the storage tanks, while the energy intensity of the water treatment units was found to be 3.1 Wh m−3. A PV system with a 1.5 MW capacity with battery storage (30 MWh) was found to have a positive net present value and a levelized cost of electricity of 3.1 cents kWh−1. A net reduction in the carbon emissions was found as 950 and 570 metric tons of CO2-eq year−1 due to the PV-based design, with and without battery storage, respectively.

Keywords

Energy consumption; Solar energy; Photovoltaics; Drinking water treatment; Techno-economic assessment; Carbon emissions

Disciplines

Hydraulic Engineering

File Format

pdf

File Size

1676 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS