HIMU Geochemical Signature Originating From the Transition Zone

Document Type

Article

Publication Date

5-15-2020

Publication Title

Earth and Planetary Science Letters

Volume

542

First page number:

1

Last page number:

8

Abstract

Plume volcanism may sample mantle sources deeper than mid-ocean ridge and arc volcanism. Ocean island basalts (OIBs) are commonly related to plume volcanism, and their diverse isotopic and elemental compositions can be described using a limited number of mantle endmembers. However, the origins and depths of these mantle endmembers are highly debated. Here we show that the HIMU (high μ, μ = 238U/204Pb) endmember may reside in the transition zone. Specifically, we report the geochemical signature of a high-pressure multiphase diamond inclusion, entrapped at 420–440 km depth and 1450 ± 50 K, which matches exactly the geochemical patterns of the HIMU-rich OIBs. Since the HIMU component is variably sampled by almost all OIBs, our finding implies that the transition zone causes a major overprint of the geochemical features of mantle plumes. Some mantle plumes, like those feeding Bermuda, St Helena, Tubuai and Mangaia, appear to be dominated by this source. Furthermore, our finding highlights the importance of the transition zone in highly incompatible element budget of the mantle.

Keywords

HIMU; Mantle plumes; Transition zone; Diamond inclusion; Trace elements; High-pressure minerals

Disciplines

Geology | Tectonics and Structure

Language

English

UNLV article access

Search your library

Share

COinS