Document Type

Article

Publication Date

1-12-2021

Publication Title

Nature Communications

Volume

12

Issue

1

First page number:

1

Last page number:

7

Abstract

© 2021, The Author(s). Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.

Disciplines

Geochemistry

File Format

pdf

File Size

1007 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Included in

Geochemistry Commons

Share

COinS