Fatigue Induced Hip Abductor Weakness and Changes in Biomechanical Risk Factors for Running Related Injury
Document Type
Article
Publication Date
9-18-2020
Publication Title
Journal of Athletic Training
Abstract
Context: Despite overlap between hip abductor (HABD) weakness and fatigue-induced changes in running, the interaction of these theorized contributors to running injuries has been underevaluated. Objective: To assess the effects of a fatiguing run on HABD torque and evaluate the correlation between HABD torque and previously identified running-related injury pathomechanics while participants were rested or fatigued.Design: Crossover study. Setting: Laboratory. Patients or other participants: A total of 38 healthy, physically active males (age = 21.61 ± 4.02 years, height = 1.78 ± 0.08 m, body mass = 76.00 ± 12.39 kg). Intervention(s): Data collection consisted of rested-state collection, a fatiguing treadmill-run protocol, and fatigued-state collection. For theHABD measures, side-lying handheld-dynamometer isometric tests were performed and converted to torque using femur length. For the gait analysis, kinematic (240 Hz) and kinetic (960 Hz) running (4.0 m/s) data were collected for 3 trials. The fatigue protocol involved a graded exercise test and 80% o2max run to exhaustion. Immediately after the run, fatigued-state measures were obtained. Main outcome measure(s): Variables of interest were HABD torque and peak angles, velocities, and moments for hip and knee adduction and internal rotation. Differences between conditions were compared using paired t tests. Pearson correlation coefficients were calculated to evaluate relationships between HABD torque and biomechanical variables. Results: Fatigue decreased HABD torque and increased hip-adduction angle, knee-adduction velocity, and hip and knee internal-rotation velocities and moments (all P values < .05). In the rested state, HABD torque was correlated with hip-adduction velocity (r = -0.322, P = .049). In the fatigued state, HABD torque was correlated with hip-adduction velocity (r = -0.393, P = .015), hip internal-rotation velocity (r = -0.410, P = .01), and knee-adduction angle (r = 0.385, P = .017) and velocity (r = -0.378, P = .019). Conclusions: Changes in joint velocities due to fatigue and correlations between HABD torque and hip- and knee-joint velocities highlight the need to consider not only the quantity of HABD strength but also the rate of eccentric control of HABDs.
Keywords
Gait Analysis; Hip-Abductor Strength; Knee Overuse Injuries
Disciplines
Kinesiology | Life Sciences
Language
English
Repository Citation
Radzak, K.,
Stickley, C. D.
(2020).
Fatigue Induced Hip Abductor Weakness and Changes in Biomechanical Risk Factors for Running Related Injury.
Journal of Athletic Training
http://dx.doi.org/10.4085/1062-6050-531-19