Transient Analysis of a Ceramic High Temperature Heat Exchanger and Chemical Decomposer

Document Type

Conference Proceeding

Publication Date

11-11-2007

Publication Title

ASME International Mechanical Engineering Congress and Exposition

Publisher

American Society of Mechanical Engineers

Volume

3

First page number:

287

Last page number:

294

Abstract

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicon carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.

Keywords

Ceramics – Effect of temperature on; Decomposition (Chemistry); Heat exchangers; High temperatures; Silicon carbide; Transient analysis

Disciplines

Ceramic Materials | Heat Transfer, Combustion | Materials Science and Engineering | Mechanical Engineering

Language

English

Comments

Conference held: Seattle, Washington, USA, November 11–15, 2007

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS