A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production

Document Type

Article

Publication Date

3-18-2008

Publication Title

Journal of Heat Transfer

Volume

130

Issue

4

First page number:

042409

Last page number:

042409

Abstract

A photoelectrochemical model for hydrogen production from water electrolysis using proton exchange membrane is proposed based on Butler-Volmer kinetics for electrodes and transport resistance in the polymer electrolyte. An equivalent electrical circuit analogy is proposed for the sequential kinetic and transport resistances. The model provides a relation between the applied terminal voltage of electrolysis cell and the current density in terms of Nernst potential, exchange current densities, and conductivity of polymer electrolyte. Effects of temperature on the voltage, power supply, and hydrogen production are examined with the developed model. Increasing temperature will reduce the required power supply and increase the hydrogen production. An increase of about 11% is achieved by varying the temperature from 30°C to 80°C. The required power supply decreases as the illumination intensity becomes greater. The power supply due to the cathode overpotential does not change too much with the illumination intensity. Effects of the illumination intensity can be observed as the current density is relatively small for the examined illumination intensities.

Keywords

Energy consumption; Hydrogen as fuel; Proton exchange membrane fuel cells; Water – Electrolysis

Disciplines

Chemical Engineering | Engineering | Heat Transfer, Combustion | Mechanical Engineering | Oil, Gas, and Energy

Language

English

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS