Stability Analysis and Control of Overhead Crane With Time-Dependent Flexible Cable

Document Type

Article

Publication Date

7-24-2005

Publication Title

Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2005

Volume

24

First page number:

1500

Last page number:

1504

Abstract

A mathematical model of an overhead crane system with load hoisting and a flexible cable is presented. The model consists of a hyperbolic partial differential equation describing the dynamics of the moving flexible cable and ordinary differential equations describing the trolley and payload dynamics. Lyapunov direct method is used to design a model-based boundary control law that achieves trolley and payload desired positions and ensures vibration reduction of the flexible cable. The proposed control law is based on measurable variables for the trolley and the cable. The stability of the closed loop system under this boundary control scheme is proved through the use of inequality and metric analysis

Keywords

Cables; Control systems; Control theory; Cranes; Differential equations; Force control; Live loads; Mathematical models; Mechanical cables; Mechanical engineering; Partial differential equations; Payloads; Power cables; Stability; Stability analysis

Disciplines

Acoustics, Dynamics, and Controls | Control Theory | Electro-Mechanical Systems | Mechanical Engineering

Language

English

Comments

Conference held: Monterey, CA, 24-28 July 2005

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS