Solar Power Output Correlation with Utility Demand in Southern Nevada

Document Type

Article

Publication Date

5-1997

Publication Title

Journal of Solar Energy Engineering-Transactions of the ASME

Volume

119

Issue

2

First page number:

141

Last page number:

146

Abstract

Various solar electric system performance codes are used to predict the power generated by different solar power systems in the Southern Nevada area during 1990 by using the National Solar Radiation Data Base (NSRDB) for Las Vegas. The system types evaluated along with the prediction codes (shown in parenthesis) are as follows: a central receiver or a power tower system with various amounts of storage (SOLERGY), a Luz-type SEGS parabolic trough system without fossil fuel backup or storage (LUZERGY), a dish-Stirling system (DISH2, a conversion of direct beam radiation with constant collector/engine efficiency was used for this), and various arrangements of nonconcentrating photovoltaic devices (PVFORM). Comparisons of these results are made with the daily variations of load requirements of an electrical utility operating in the same geographical area. These comparisons are made for summer and winter periods. It is shown that several of the power generation schemes have summer peak outputs that occur at times very near to, but not coincident with, the peak utility load requirements. The power tower with a relatively small amount of thermal storage was the only scheme able to provide full power output at the times of summer peak demands. Winter peaks in this region occur during the night. Two comparisons are made that illuminate the summer load serving capability of solar generation in addition to simply showing time-variations of outputs. Included in these comparisons are the determination of the difference in time between the peak power output and the peak demand, as well as the normalized fraction of the peak power generated at the peak demand times.

Keywords

Energy consumption; Nevada; Peak load; Solar energy; Solar power plants

Disciplines

Energy Systems | Mechanical Engineering | Oil, Gas, and Energy | Power and Energy | Sustainability

Language

English

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS