Document Type

Article

Publication Date

3-11-2021

Publication Title

Scientific Reports

First page number:

1

Last page number:

8

Abstract

Machine learning methods are changing the way data is analyzed. One of the most powerful and widespread applications of these techniques is in image segmentation wherein disparate objects of a digital image are partitioned and classified. Here we present an image segmentation program incorporating a series of unsupervised clustering algorithms for the automatic thickness identification of two-dimensional materials from digital optical microscopy images. The program identifies mono- and few-layer flakes of a variety of materials on both opaque and transparent substrates with a pixel accuracy of roughly 95%. Contrasting with previous attempts, application generality is achieved through preservation and analysis of all three digital color channels and Gaussian mixture model fits to arbitrarily shaped data clusters. Our results provide a facile implementation of data clustering for the universal, automatic identification of two-dimensional materials exfoliated onto any substrate.

Keywords

Image segmentation; Optical identification; 2D materials; Machine learning

Disciplines

Engineering | Materials Science and Engineering | Semiconductor and Optical Materials

File Format

pdf

File Size

146 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS