Award Date

1-1-1995

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

Number of Pages

33

Abstract

Designers of distributed algorithms have to contend with the problem of making the algorithms tolerant to several forms of coordination loss, primarily faulty initialization. The processes in a distributed system do not share a global memory and can only get a partial view of the global state. Transient failures in one part of the system may go unnoticed in other parts and thus cause the system to go into an illegal state. If the system were self-stabilizing, however, it is guaranteed that it will return to a legal state after a finite number of state transitions. This thesis presents and proves self-stabilizing algorithms for calculating tree metrics and for achieving mutual exclusion on a tree structured distributed system.

Keywords

Algorithms; Self; Stabilizing; Tree

Controlled Subject

Computer science

File Format

pdf

File Size

1536 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/o0kl-rfq0


Share

COinS