Document Type
Article
Publication Date
4-23-2019
Publication Title
PLoS ONE
Publisher
Public Library of Science
Volume
14
Issue
4
First page number:
1
Last page number:
11
Abstract
Magnetotactic bacteria biomineralize intracellular magnetic nanocrystals surrounded by a lipid bilayer called magnetosomes. Due to their unique characteristics, magnetite magnetosomes are promising tools in Biomedicine. However, the uptake, persistence, and accumulation of magnetosomes within mammalian cells have not been well studied. Here, the endocytic pathway of magnetite magnetosomes and their effects on human cervix epithelial (HeLa) cells were studied by electron microscopy and high spatial resolution nano-analysis techniques. Transmission electron microscopy of HeLa cells after incubation with purified magnetosomes showed the presence of magnetic nanoparticles inside or outside endosomes within the cell, which suggests different modes of internalization, and that these structures persisted beyond 120 h after internalization. High-resolution transmission electron microscopy and electron energy loss spectra of internalized magnetosome crystals showed no structural or chemical changes in these structures. Although crystal morphology was preserved, iron oxide crystalline particles of approximately 5 nm near internalized magnetosomes suggests that minor degradation of the original mineral structures might occur. Cytotoxicity and microscopy analysis showed that magnetosomes did not result in any apparent effect on HeLa cells viability or morphology. Based on our results, magnetosomes have significant biocompatibility with mammalian cells and thus have great potential in medical, biotechnological applications.
Disciplines
Bacteriology | Biotechnology | Medical Biotechnology
File Format
File Size
155 KB
Language
English
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Repository Citation
Cypriano, J.,
Werckmann, J.,
Vargas, G.,
Lopes dos Santos, A.,
Silva, K. T.,
Leao, P.,
Almeida, F. P.,
Bazylinski, D. A.,
Farina, M.,
Lins, U.,
Abreu, F.
(2019).
Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: Implications for medical and biotechnological applications..
PLoS ONE, 14(4),
1-11.
Public Library of Science.
http://dx.doi.org/10.1371/journal.pone.0215657