Document Type
Article
Publication Date
9-9-2020
Publication Title
Ecological Monographs
First page number:
1
Last page number:
19
Abstract
Improving models of community change is a fundamental goal in ecology and has renewed importance during global change and increasing human disturbance of the biosphere. Using the Mojave Desert (southwestern United States) as a model system, invaded by nonnative plants and subject to wildfire disturbances, we examined models of resilience, alternative stable states, and convergent-divergent trajectories for 36 yr of plant community change after 31 wildfires in communities dominated by the native shrubs Larrea tridentata or Coleogyne ramosissima. Perennial species richness on average was fully resilient within 23 yr after disturbance in both community types. Perennial cover was fully resilient within 25 yr in the Larrea community, but recovery was projected to require 52 yr in the Coleogyne community. Species composition shifts were persistent, and in the Coleogyne community, the projected compositional recovery time of 550 yr and increasing resembled a deflected trajectory toward potential alternative states. Disturbed sites contained a perennial species composition of predominately short-statured forbs, subshrubs, and grasses, contrasting with the larger-statured shrub and tree structure of undisturbed sites. Auxiliary data sets characterizing species recruitment, annual plants including nonnative grasses, biocrust communities, and soils showed persistent differences between disturbed and undisturbed sites consistent with positive feedbacks potentially contributing to alternative stable states. Resprouting produced limited resilience for the large shrubs L. tridentata and Yucca spp. important to population persistence but did not forestall long-term reduced abundance of the species. The nonnative annual grass Bromus rubens increased on disturbed sites over time, suggesting persistently abundant nonnative plant fuels and reburn potential. Biocrust cover on disturbed sites was half and species richness a third of amounts on undisturbed sites. Soil nitrogen was 30% greater on disturbed sites and no significant trend was evident for it to decline on even the oldest burns. Disturbed desert plant communities simultaneously supported all three models of resilience, alternative stable states, and convergent-divergent trajectories among community measures (e.g., species richness, composition), timeframes since disturbance, and spatial resolutions. Accommodating expression within ecosystems of multiple models, including those opposing each other, may help broaden theoretical models of ecosystem change.
Keywords
Convergence; Divergence; Mojave Desert; Threshold; Trajectory; Vegetation change
Disciplines
Desert Ecology | Ecology and Evolutionary Biology | Environmental Sciences | Life Sciences | Physical Sciences and Mathematics
File Format
File Size
1.913 KB
Language
English
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Repository Citation
Abella, S. R.,
Gentilcore, D. M.,
Chiquoine, L. P.
(2020).
Resilience and Alternative Stable States After Desert Wildfires.
Ecological Monographs
1-19.
http://dx.doi.org/10.1002/ecm.1432